E-626-A
Real-Time Embedded Systems (RTES)

Lecture #7
Synchronous Serial Links &
CCP Modules

Instructor:

Dr. Ahmad El-Banna

Agenda

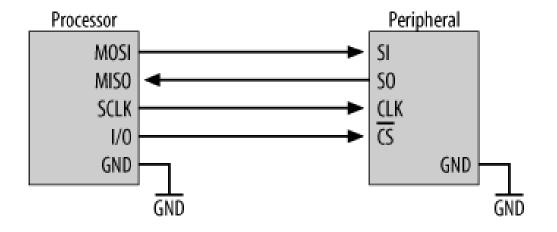
SPI

12C

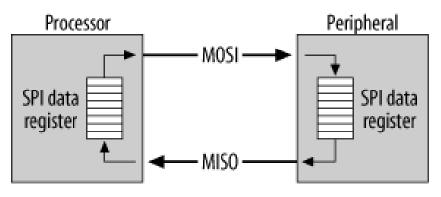
CCP Module

SERIAL PERIPHERAL INTERFACE (SPI)

SPI Interface


- The Serial Peripheral Interface (known as SPI) was developed by Motorola to provide a low-cost and simple interface between microcontrollers and peripheral chips.
- Also known as a four-wire interface.
- Used to interface to memory (for data storage), ADC, DAC, real-time clock calendars, LCD drivers, sensors, audio chips, and even other processors.
- Unlike a standard serial port, **SPI** is a **synchronous** protocol in which all transmissions are referenced to a common clock, generated by the **master** (processor).
- The receiving peripheral (slave) uses the clock to synchronize its acquisition of the serial bit stream.

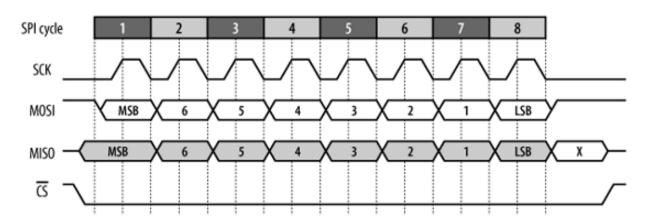
Basic SPI Interface

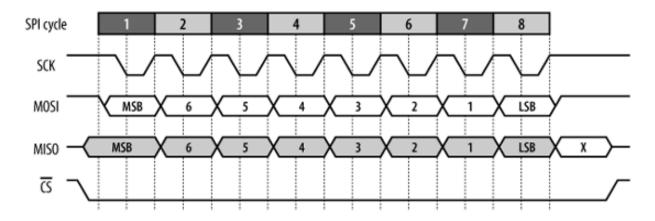

- SPI uses four main signals:
 - Master Out Slave In (MOSI)
 - Master In Slave Out (MISO)
 - Serial CLock (SCLK or SCK)
 - Chip Select (CS)

SPI Transmission

- Both masters and slaves contain a serial shift register.
- The master starts a transfer of a byte by writing it to its SPI shift register.
- As the register transmits the byte to the slave on the MOSI signal line, the **slave transfers** the **contents** of its shift register **back to** the **master** on the MISO signal line.
- In this way, the contents of the two shift registers are exchanged.
- Both a write and a read operation are performed with the slave simultaneously.

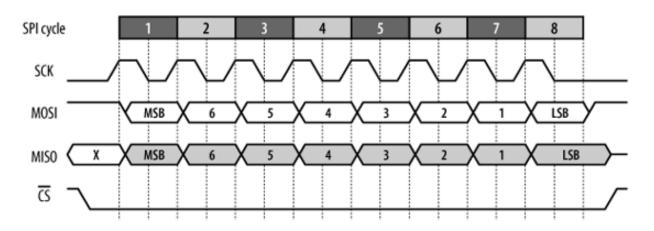
SPI Timing

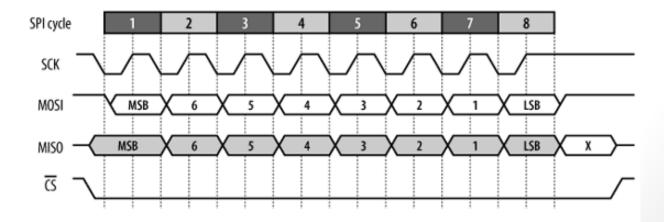

- SPI has four modes of operation, depending on clock polarity and clock phase.
- For low clock polarity, the clock (SCK) is low when idle and toggles high during a transfer and vice versa.
- The two clock phases are known as clock phase zero and clock phase one.
- For clock phase zero, MOSI and MISO outputs are valid on the rising edge of the clock (SCK) if the clock polarity is low and vice versa.



SPI Timing..

SPI timing with clock polarity low and clock phase zero

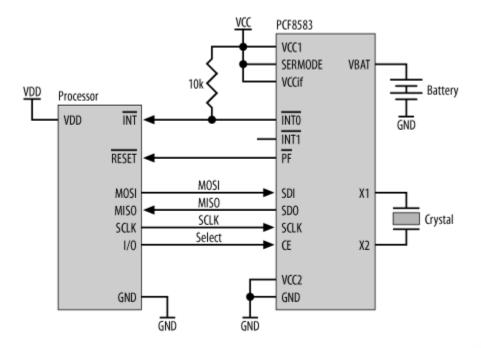

SPI timing with clock polarity high and clock phase zero



SPI Timing...

SPI timing with clock polarity low and clock phase one

SPI timing with clock polarity high and clock phase one

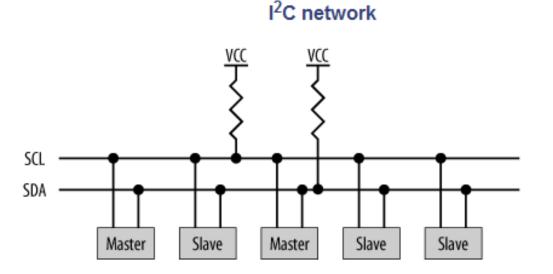


SPI Application SPI-Based Clock/Calendar

- A clock/calendar chips contain an oscillator module driven by a crystal, just like a processor.
- The oscillator module ticks over internal counters that track milliseconds, seconds, minutes, hours, days, months, and years.
- They are specifically designed to provide accurate timekeeping, and many have additional functions such as an "alarm" and a watchdog.

RTES, Lec#7, Spring 2015

 I^2C

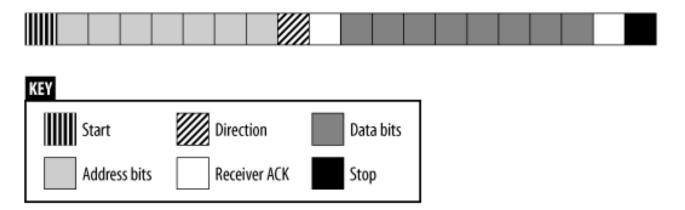

Overview of I²C

- I²C (Inter-Integrated Circuit) bus is a very cheap yet effective network used to interconnect peripheral devices within smallscale embedded systems.
- I²C uses two wires to connect multiple devices in a multi-drop bus.
- The bus is bidirectional, low-speed, and synchronous to a common clock.
- **Devices** may be **attached** or **detached** from the I²C bus without affecting other devices.
- The data rate of I²C is somewhat slower than SPI, at **100 kbps** in **standard mode**, and **400 kbps** in **fast mode**.

I²C Network

- The two wires used to interconnect with I²C are SDA (serial data) and SCL (serial clock).
- Both lines are open-drain, they are connected to a positive supply via a
 pull-up resistor and therefore remain high when not in use.
- Each device connected to the I²C bus has a unique address and can operate as either a transmitter (a bus master), a receiver (a bus slave), or both.
- I²C is a **multi-master bus**, meaning that more than one device may assume the role of bus master.

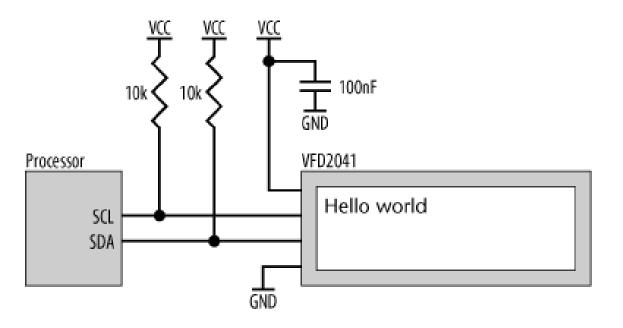




I²C Packets

I²C packet with receiver acknowledge

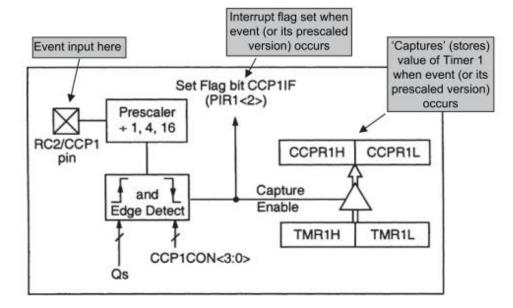
An I²C packet



Adding a Small Display with I²C

Interfacing a VFD2041 display using I²C

CCP MODULES



Capture Mode

- A register that can record the time of an event is called a 'Capture' register.
- One that can generate an alarm does this by holding a preset value and comparing it with the value of a running timer.
- The 16F873A has two such modules and they are well worth understanding.
- Each module has two 8-bit registers, called CCPRxL and CCPRxH, where x is 1 or 2.
- Together they form a 16-bit register that can be used for capture, compare or to form the duty cycle of a PWM stream.
- The CCP modules are controlled by their respective CCPxCON register

Capture Mode..

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7		_					bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-4 CCPxX:CCPxY: PWM Least Significant bits

Capture mode:

Unused.

Compare mode:

Unused.

PWM mode:

These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.

bit 3-0 CCPxM3:CCPxM0: CCPx Mode Select bits

0000 = Capture/Compare/PWM disabled (resets CCPx module)

0100 = Capture mode, every falling edge

0101 = Capture mode, every rising edge

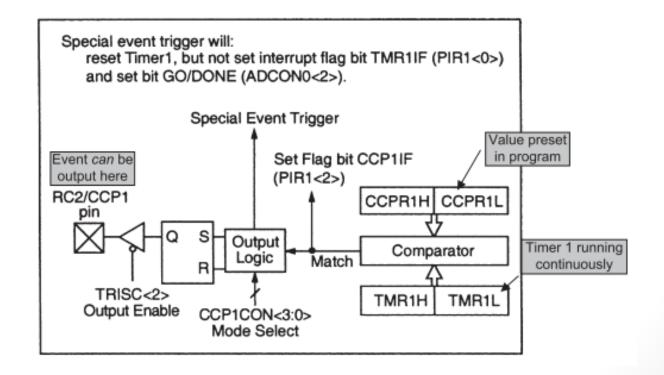
0110 = Capture mode, every 4th rising edge

0111 = Capture mode, every 16th rising edge

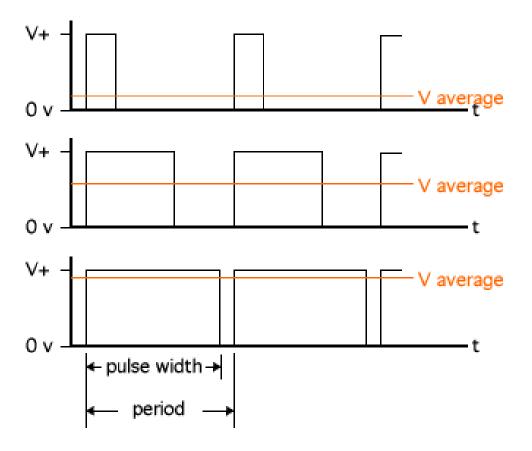
1000 = Compare mode, set output on match (CCPxIF bit is set)

1001 = Compare mode, clear output on match (CCPxIF bit is set)

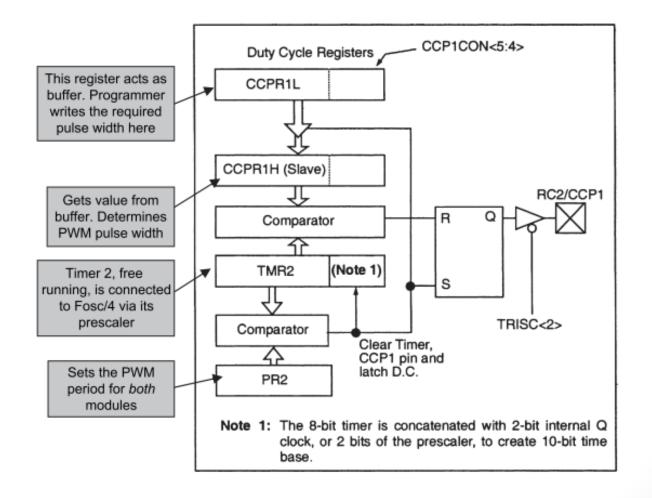
1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected)


1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled)

11xx = PWM mode


Compare Mode

 A digital comparator is designed into the hardware which continuously compares the value of Timer 1 and the 16-bit register made up of CCPR1H and CCPR1L.


PWM, Pulse width modulation

PWM Block Diagram

Sample Proj.

 Apply pulse width modulation with an H-bridge to control a dc motor speed.

- For more details, refer to:
 - Chapter 7,8, Designing Embedded Hardware.
 - Chapter 9,10, T. Wilmishurst, **Designing Embedded Systems with PIC Microcontrollers**, 2010.
- The lecture is available online at:
 - http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>

